Faster quantum-walk algorithm for the two-dimensional spatial search
نویسندگان
چکیده
منابع مشابه
Iterated Local Search Algorithm for the Constrained Two-Dimensional Non-Guillotine Cutting Problem
An Iterated Local Search method for the constrained two-dimensional non-guillotine cutting problem is presented. This problem consists in cutting pieces from a large stock rectangle to maximize the total value of pieces cut. In this problem, we take into account restrictions on the number of pieces of each size required to be cut. It can be classified as 2D-SLOPP (two dimensional single large o...
متن کاملTwo-dimensional quantum random walk
We analyze several families of two-dimensional quantum random walks. The feasible region (the region where probabilities do not decay exponentially with time) grows linearly with time, as is the case with one-dimensional QRW. The limiting shape of the feasible region is, however, quite different. The limit region turns out to be an algebraic set, which we characterize as the rational image of a...
متن کاملA Quantum Random Walk Search Algorithm
Quantum random walks on graphs have been shown to display many interesting properties, including exponentially fast hitting times when compared with their classical counterparts. However, it is still unclear how to use these novel properties to gain an algorithmic speed-up over classical algorithms. In this paper, we present a quantum search algorithm based on the quantum random walk architectu...
متن کاملOptical implementability of the two–dimensional Quantum Walk
We propose an optical cavity implementation of the two–dimensional coined quantum walk on the line. The implementation makes use of only classical resources, and is tunable in the sense that a large number of different unitary transformations can be implemented by tuning some parameters of the device.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review A
سال: 2008
ISSN: 1050-2947,1094-1622
DOI: 10.1103/physreva.78.012310